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Abstract— The transition of control from autonomous sys-
tems to human drivers is critical in automated driving systems,
particularly due to the out-of-the-loop (OOTL) circumstances
that reduce driver readiness and increase reaction times.
Existing takeover strategies are based on fixed time-based tran-
sitions, which fail to account for real-time driver performance
variations. This paper proposes an adaptive transition strategy
that dynamically adjusts the control authority based on both
the time and tracking ability of the driver trajectory. Shared
control is modeled as a cooperative differential game, where
control authority is modulated through time-varying objective
functions instead of blending control torques directly. To ensure
a more natural takeover, a driver-specific state-tracking matrix
is introduced, allowing the transition to align with individual
control preferences. Multiple transition strategies are evaluated
using a cumulative trajectory error metric. Human-in-the-loop
control scenarios of the standardized ISO lane change maneu-
vers demonstrate that adaptive transitions reduce trajectory
deviations and driver control effort compared to conventional
strategies. Experiments also confirm that continuously adjusting
control authority based on real-time deviations enhances vehicle
stability while reducing driver effort during takeover.

I. INTRODUCTION

The evolution of autonomous vehicles promises improved
safety, convenience and accessibility in transportation, yet
it also presents new challenges in maintaining safe and ef-
fective interactions between human drivers and autonomous
systems The Society of Automotive Engineers (SAE) [1]
defines five levels of autonomy, where intermediate levels (3
and 4) require human drivers to be ready to take control when
necessary. However, research shows that humans struggle
to maintain attention in highly automated systems [2] and
often over-rely on automation, leading to the Out-Of-The-
Loop (OOTL) phenomenon [3], where drivers fail to properly
monitor the system.

Two key responsibilities for humans in automation are
monitoring system performance and being prepared to re-
sume control when automation fails to meet expectations
[4]. Studies [5], [6] have shown that increasing automation
reduces mental workload and situational awareness while
increasing driver reaction times [7]. These effects are par-
ticularly concerning when drivers need to quickly take over
control during unexpected events.

The process of transferring control from automation back
to the human driver is called a takeover [8]. During this tran-
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sition, control must be smoothly transferred to prevent insta-
bility. The National Highway Traffic Safety Administration
(NHTSA) [9] has documented numerous accidents caused by
unintended lane changes during control transitions. Although
Advanced Driver Assistance Systems (ADAS) improve lane-
keeping performance, sudden control shifts remain a risk.
Instead of an abrupt takeover, shared control — where both
driver and automation contribute simultaneously — has been
shown to improve safety and stability [10]. One practical im-
plementation of shared control that has gained support [11]-
[13] involves both the driver and the autonomous system
applying the steering torque simultaneously [14].

Game theory provides a mathematical framework for mod-
eling shared control, capturing real-time interactions between
the driver and ADAS as a differential game [15]. The closed-
loop Nash equilibrium approach has been widely applied
in vehicle control, demonstrating robustness in handling
uncertainties and adapting to driver behavior [16], [17].
Prior work has formalized shared control as a differential
game, ensuring that neither the driver nor the ADAS can
unilaterally improve performance by modifying their steering
torque inputs, resulting in an equilibrium in steering control
[18]. This formulation enables precise modeling of mutual
influences between both control partners. They further es-
tablished fundamental design principles for shared control
systems, including necessary and sufficient conditions for
controller synthesis. As illustrated in Fig. 1, their approach
conceptualizes the assistance system as a complementary
partner to the human drive. This interaction is mathematically
formulated as a differential game, enabling precise modeling
of mutual influences between both control partners.
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Fig. 1: Game theoretic realization for shared control
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Ludwig et al. [19] focused on developing a mathematical
framework for smooth transitions of control authority during
takeover scenarios. Their approach, validated through lane
change simulations, explored various time-varying takeover
strategies. However, their investigation was limited to time-
dependent transitions. Our work extends their foundation
by considering transition functions that incorporate situa-



tional awareness, driver-specific preferences, and quantitative
evaluation methods to enhance the safety and efficiency of
control transitions. The key contributions of this paper are
as follows:

o Development of an adaptive transition function that
adjusts the control authority based on both time and
driver performance.

o Comparative analysis of multiple transition strategies
using a cumulative error metric for trajectory deviation
and stabilization.

« Integration of driver-specific control preferences into the
shared control framework to ensure efficient takeover.

The remainder of this paper is organized as follows.
Section II presents the vehicle dynamics model and the driver
modeling approach. Section III develops the cooperative
game-theoretic framework for shared control, establishing
the mathematical foundations for driver-ADAS interaction.
Section IV analyzes various control sharing strategies, in-
cluding the proposed situation-aware transition functions and
the integration of driver preference. Section V validates these
approaches through simulation studies of lane-change and
overtaking scenarios, with quantitative performance compar-
isons. Finally, Section VI summarizes the key findings and
discusses future research directions.

II. MODEL DESCRIPTION
A. Shared Control Steering Framework

In the shared control setup, both the human driver and
the ADAS apply torques to the steering wheel. Instead of
explicitly blending their control inputs as a convex com-
bination, the system dynamically adjusts control authority
by modifying the weighting matrices Q)p (driver) and Q4
(ADAS) in the optimal control formulation [19]. Formally,
the cost function weights are adjusted as follows:

max

Qp(t) = a()Qp™, Qa(t) = (1 —a(®)QE™ (1)

for some function «(t). More details about this update rule
and transition function is provided in Section IV. The shared
control steering system allows for interaction between the
human driver and the ADAS through the steering wheel.
Furthermore, both the driver and the ADAS have access to
the vehicle states and are guided by predefined reference tra-
jectories. This interaction facilitates implicit communication,
where the driver can sense ADAS inputs through steering
feedback, improving coordination during takeover.

B. Vehicle Model

We consider an extended single-track linear vehicle model
with an additional steering wheel dynamics model (see Fig.
2). The single-track model is a simplified representation of a
vehicle, where the two front and rear wheels are combined
into single equivalent wheels located at the center of each
axle. The steering wheel dynamics model represents the
lateral and yaw dynamics of the vehicle [20], providing
a good approximation for steering maneuvers with lateral
accelerations up to 4 m/s%.

Fig. 2: Single Track Vehicle Model

Assuming that the speed of vehicle v remains constant
during the analysis, the dynamics of the vehicle and the
steering wheel is described by the following time-invariant
linear state-space model as follows:

).((t) = AX(t) + BDTD(t) + BATA(t), )

where x(t) is the state vector, A is the vehicle system
matrix, and Bp, Ba are the input weight vectors, defined
in Appendix I. The state vector x(t) is defined as: x(t) =
B(t) d(t) o) yt) 5(t) S(D)], where, B(¢) is the
side-slip angle of the vehicle, defined as 3 = tan™' (v, /v,),
where v, and v, are the components of longitudinal and
lateral velocity, respectively, ¢ (t) represents the vehicle yaw
angle, 1)(t) is the yaw rate, y(t) represents the vehicle lateral
displacement from the center of the driving lane, §(t) is the
steering wheel angle, and 0(¢) is the rate of change of the
steering. d(t) is modeled as linearly related to the steering
angle 04(t) by d(t) = i504(t). Here, Tp(t) and Ta(t) are
the torques applied by the driver and the assistance system,
respectively, on the steering wheel.

III. CONTROL FRAMEWORK

This section presents the cooperative game-theoretic
framework utilized to solve the problem. Cooperative game
theory provides a mathematical basis where all players have
access to each other’s cost functionals. As mentioned in
Section II, both the driver and the ADAS have access to each
other’s states. The focus is on group behavior, emphasizing
coalitions between players to achieve collective goals [21].

A. General Formulation

In a cooperative differential game setting, there are N
players denoted by the set & = {1,2,..., N}, who interact
via a continuous-time dynamical system. The system is
governed by first-order ordinary differential equations over
a time horizon 7" > 0 which can be described as:

z(t) = f(t,z(t),ur(t),...,un(t)), =(0)==x9€R",
3)
where, z(t) € R™: state vector of the game at time ¢, xq:
initial state of the game, u;(t) € U;: control input of player
i from the admissible set If; C R™", F:[0,T] x R™ x Uy x
... XUy — R™: governing function (potentially non-linear).



Each player ¢ € & aims to optimize their performance by
minimizing the following cost functional:

T

Ti(s 1, o ) é/ it 2(t), ur(t), .. un(8))dt, ()
0

where ¢g; : [0,7] x R" x Uy x -+ x Uy — R is the

instantaneous or running cost rate for player . Note that each

player’s control decisions affect not only their own cost, but

also the outcomes for other players.

The information structure defines the knowledge available
to players when making decisions. There are two primary
paradigms, Open and Closed Loop Information Structures.
In Open-Loop Information Structure players only know the
initial state xy of the game and the control strategy -;, a
mapping R™ — U; from the initial state to control actions,
such that u;(t) = 7;(¢t,20)vt € [0,T]. In Closed-Loop
Information Structure, players have access to the current
state x(t) of the game at all times and the control strategy,
¢; : R® — U;, that maps the current state and time to
control actions, such that u;(t) = ¢; (¢, z(t))Vt € [0,T]. In
this work, we adopt the closed-loop information structure,
as it allows players to use real-time information for decision
making, improving responsiveness and adaptability.

A Nash equilibrium is a collection of strategies in which
no player has an incentive to unilaterally deviate from their
chosen strategy. In the cooperative dynamic game context,
Nash equilibrium ensures that all players act optimally
with respect to each other’s strategies. Explicitly, the Nash
equilibrium for two-player game can be defined by the set
of strategies {u}(t)}2_, that satisfy:

Jr & Ttz ui (1), us(t) < Ji(tz,un (), us(t))
I3 & Jo(t,x, ui(h), us(t) < Jalt, @, ui(t), us(t))

{Vu;(t),i = 1,2} subject to the dynamics in (3) and the
admissible control sets Uf;. For a Nash equilibrium to exist,
the cost functionals .J; must be continuously differentiable
with respect to u;, the admissible control sets I{; must be
convex, and the governing function f(¢,x,u1,us) should
satisfy the Lipschitz continuity in = and u; to ensure the
existence of a unique solution to differential equations.

(&)

B. Cooperative Differential Game Setup for Takeover

We consider a cooperative differential game involving
two players working towards a shared goal of tracking a
reference path smoothly. The two players are the human
driver, exerting a control torque Tp and the ADAS, applying
a control torque T4. Let Xf(t) denote the reference state,
then the tracking error can be defined as X = x(t) — Xer. We
can modify the dynamics of the system (2) to incorporate
tracking error dynamics using:

x(t) = Ax(t) + BpTp(t) + BATA(t) + Axps  (6)

The players aim to minimize their respective cost func-
tionals, which are quadratic in nature. Quadratic cost formu-
lations are widely used in optimal control and game-theoretic
settings due to their convexity and analytical tractability [22].

From (4), the cost functional for a player ¢ € {1,2} can be
defined as:

1_+
J¢:§X (T) / {x t)Qi(t)x(t) 7
u (H)Rs(H)u(t) }dt

where, S; is the terminal state weighting matrix (symmetric
and positive semidefinite), Q;(¢) represents the state devi-
ation penalty matrix (symmetric and positive semidefinite),
and R;(¢) represents the control effort penalty matrix (posi-
tive definite). The choice of this quadratic structure ensures
a trade-off between stability and performance, preventing
excessive control actions while guiding the system towards
the desired state. The objective for each player ¢ is to solve
the linear-quadratic optimal control problem:

3

u; () = arg m%r; Ji ()

subject to the dynamics:
X(t) = AX(t) + Byu;(t) + Bjuj () + Axper, j # 4,

)N((O) = X0 — Xyef

9

We assume that the final cost function, after solving (7),
takes the quadratic form:

Vil 1) = 5% Pi(0)% + cilt)
where P;(t) is symmetric positive semi-definite matrix and
¢i(t) is a scalar function. The optimal control strategies uf
and uj are derived using the Nash equilibrium condition
by solving coupled Hamilton-Jacobi-Bellman equation (HIB)
0 = J:(X(t),t) + *%ﬂ(x(t)’ ( ()7J;v )7 X7 )) [23].
Differentiating the Hamiltonian with respect to u;, we obtain:

(1)

with boundary condition ViVi(x,T) = Six(T). Now, we
have Vi(x,T) = 1%(T)"S;%(T) from (7) and V;(x,T) =
1xTPi(T)x + ci( ) from (10). Comparing these two, we
get the boundary condition P;(T) = S;, and ¢;(T") = 0.
We also have V.V, = fxTP i(H)X + ¢i(t) and VgV, =
(Pi(t)x) ". Substituting back into the HJB equations, we
will get

(10)

u = -R; 'B ViV = -R; 7 'B/ (Pi(t)%).

Collecting quadratic terms from (12), we will get the
Riccati Differential equation for P:

Pi(t) = — (Pi(t)A + ATP;(t) - P(1) B{ R; 'B;P;(t)

~Pi(1)ByR; "B Pj(1) - Pi(t)BiR; "B/ Pi(t) + Q)

13)



for j # 4, with boundary conditions defined as: P;(T") = S;.
After obtaining this P; recursively, we can get the optimal
control for both players by substituting it in (11). Since
(13) do not have closed-form analytical solutions in general,
they are typically solved using numerical methods [24]. A
common approach is to employ a first-order backward Euler
discretization for numerical integration, where the equations
are propagated backward in time from a terminal condition.
Hence, in a discrete-time framework, the optimal control
problem is reformulated, with state and control inputs eval-
vated at discrete steps. The cost function in discrete time is
given by: J = S0 ! [1x] Qxy, + tu/ Ruy] + Lx [ Sxy,
where S is the terminal cost weight. The corresponding
discrete-time Riccati equations governing the evolution of
P, are:

Pl — P 4 (P (A, +F,P)
' (14)
+(Aq—F,PO) PR MR PH 4 Qi)At,

for j # i, where the index k = n,...,1 with n = T/At,
P" =S, and F;, = B;R;'B].

The stability of the shared control strategy arises from
the closed-loop Nash equilibrium, where neither the driver
nor the ADAS can unilaterally improve their strategy. This
ensures a balanced interaction, preventing destabilizing be-
haviors. The coupled Riccati equations governing the opti-
mal control laws yield symmetric, positive-definite solutions
under standard controllability and observability conditions,
ensuring deviations are corrected through feedback control.
The existence and uniqueness of the Nash equilibrium further
reinforce stability. Thus, the cooperative game-theoretic ap-
proach ensures stability through real-time adaptation, closed-
loop feedback, and well-structured cost functions.

IV. SHARING CONTROLLED STRATEGY

Towards the end of the takeover process, the human driver
must regain full control of the vehicle. The cooperative
differential game framework introduced in Section III ac-
commodates time-varying matrices, allowing it to model
the evolving objectives of both the human driver and the
ADAS during the transition. A gradual shift in control
authority is necessary to ensure safety and stability, which is
implemented by adjusting the weighting matrices Q and R
in the respective cost functions of both agents. To facilitate
a smooth transition, the cooperative game framework dy-
namically modifies these matrices. Prior work [19] suggests
that modulating Q is more computationally efficient than
adjusting R, making it the preferred approach.

A. Control Authority Transition Function

The shift in control authority between the ADAS and the
human driver is governed by a function «(t), defined as:

at) € [0,1], VtE [ts,tE] (15)

where tg and tg denote the start and end of the transition,
respectively. By definition, «(tg) = 0 (full ADAS control)
and a(tg) = 1 (full human control). At the end of the

transition, the driver is expected to have full control of the
vehicle. During the transition phase, the tracking matrices
for both agents evolve as follows:

max

Qb =a(t)QE™, QA" =(1-a(t)Qk

where QB and QA** represent the maximum weighting
matrices for the human driver and the ADAS, respectively.
This gradual modulation prevents abrupt control shifts that
can destabilize the system. Several transition functions can
be used to define how control shifts from the ADAS to the
human driver during the given takeover time.

(i) The step function provides an instantaneous transition
at a specified time point, but this abrupt change can introduce
discontinuities in vehicle control. (ii) The linear function
ensures a constant rate transition, offering a predictable and
uniform control transfer. (iii) The sigmoid function, charac-
terized by its S-shaped curve, enables smoother transitions
with gradual initiation and completion, controlled by the
parameter k. (iv) The cooperative function maintains the
equal sharing of control between the human driver and
the ADAS throughout the transition, ensuring a balanced
contribution. (v) The exponential function offers a rapid
initial transition that gradually slows, balancing responsive-
ness with smoothness. (vi) Finally, the proposed adaptive
function dynamically adjusts control authority based on real-
time trajectory deviations, increasing ADAS assistance when
the driver deviates from the reference state, as measured
by cross-track error (¢,) and heading error (gy). Unlike
previous transitions, which do not account for real-time
driver performance, this approach ensures system stability
even if the driver initially struggles, allowing for a more
responsive and adaptive takeover. Table I summarizes the
mathematical forms of these transition functions.

(16)

TABLE I: Control Authority Transition Functions

Transition Function Mathematical Form

0, t<tgs
Ste alt)y=<
P (t) {L t> te
. _ t—tg
Linear a(t) = Tmois
Cooperative a(t) =0.5
. . 1
Sigmoid alt)=1- s BT
14e 2(tp—tg)
TA(t—tg)
Exponential at)=1—e te-ts A>1

Adaptive [OURS] a(t) =1 —min(0.5 + |k1ey + kaey, 1.0)

B. Quantitative Evaluation of Transition Functions
To assess the effectiveness of different transition strate-
gies, we evaluate their impact on vehicle stability, tracking
performance, and driver workload. The primary metric used
for comparison is the cumulative trajectory error, defined as:
T
Etotal = Z (55 + E?p + ﬁ2 + 52D)
0

a7

where ¢, represents the cross-track error, measuring lateral
deviation from the reference trajectory, and €., represents the



Fig. 3: Simulator setup

heading error, indicating misalignment between the vehicle’s
orientation and the reference path. The slip angle /3 is
included as it captures vehicle stability during the transition,
ensuring that control transfer does not induce excessive
lateral forces. The steering angle § reflects the effort required
from the driver to maintain the trajectory, while the steering
rate § serves as an indicator of cognitive load, with rapid
steering changes suggesting increased mental effort [25].

Since drivers require time to stabilize even after full con-
trol transfer, the total error is computed over the entire sim-
ulation duration 7" rather than stopping at ¢g. This approach
ensures that lingering effects of different transition strategies
are captured, particularly how long it takes the driver to align
with the reference trajectory post-transition. To enable fair
comparisons across transition functions, each error term is
normalized before summation, ensuring that the cumulative
errors have the same upper-bound. The comparative results
for each transition function are presented in Section V.

C. Human Driver Tracking Preferences

Since drivers exhibit different tracking behaviors, an
effective transition strategy should account for individual
preferences. Some drivers prioritize minimizing cross-track
deviation, while others focus on reducing heading error.
To incorporate these variations, we estimate individualized
weighting matrices Qp based on empirical driver data.

We conducted an ethics-approved human-in-the-loop
study (Fig. 3) with ten licensed drivers (age 23-32, driving
experience 1-7 years) in a simulated driving environment.
The CARLA simulator was used to replicate realistic vehicle
dynamics, and a Logitech G29 steering wheel was employed
for manual control. Each driver completed two familiariza-
tion runs followed by two recorded test runs, where they
were instructed to follow a predefined trajectory. Data were
sampled at a fixed interval of 0.1s, capturing vehicle state and
control inputs. To maintain consistency, data were recorded
only when the vehicle reached a steady velocity, since our
system assumes a constant speed. To derive individualized
control weights, we formulated the following optimization
problem:

N
Ji = Z(Xk — Xretk) | Qi(Xk — Xrerp) +u Rju  (18)
k=1

Algorithm 1 Shared Control Takeover

Require:

1: Vehicle state: x = [6,1/),1/),y,6, 5]

2: Reference trajectory: Xyt

3: Transition time: start g, end tg

4: Initialize control weights: (Q3**, Q5**, Ra,Rp)
Ensure:

5: Control signals: (u4,up)

6: Authority weights: (a4, ap)

7: for each timestep ¢ do

8: ift <tg then

9: ap+—1,ap <0

10 elseiftg <t < tg then

11: a < Qpype(t) // Transition function
12: ap +—1—ay

13:  else

14: ap <+ 0,ap +1

15 end if

16:  Qa ¢ aaQR™ // Update weights
17: Qp < apQp™™

18: Pa,Pp + SOlVGRiCCHti(A,BA,D,QA,D,RA,D)
19: X 4 X — Xpef

20: up —RD_IBDTPDS(

21 us+— —Ra " 'Ba Pax

22: X1 < AXt + Baua + Bpup
23: end for

// Compute controls
// Update state

where x;, represents the vehicle state at timestep k, and Xy,
is the reference state. The weighting matrix Q; captures
driver-specific tracking behavior, while R; regulates control
effort u, which was fixed at 1.0 across all drivers to maintain
consistency. The optimal Q; matrix was estimated using
regression, ensuring that it remained positive definite.

By integrating individualized weighting matrices into the
transition strategy, control authority is adjusted to match each
driver’s natural control style. This ensures that by the time
full control is transferred, the driver is already in a preferred
control state, minimizing the need for corrective actions. To
account for any residual transition effects, the cumulative
error is computed over the entire duration of the simulation
(17). This approach results in a smoother takeover, enhancing
overall stability and driver comfort.

V. EXPERIMENTAL RESULTS AND DISCUSSION

After collecting human driving data, we performed opti-
mization (18) to obtain QP> for each driver. The ADAS
system was controlled using an LQR controller, where the
quadratic control effort penalty was set to 1, and the lateral
position deviation penalty was set to 5, with other states not
considered for ADAS control. Once Q™#* was determined
for both the ADAS and the human driver, we applied the
shared control framework using Algorithm 1. To evaluate
our approach and compare different transition strategies,
we performed simulations following the ISO 17361:2017
(lane change) and ISO 3888-1:2018 (double lane change)
standards. In the lane change scenario, the vehicle, traveling



at 120km/h, must perform a maneuver to avoid an obstacle,
with a time-to-collision of 7s. The transition process begins
at 3s and ends at 8s, with the reference lateral position
remaining at Om until the start of the lane change, where
it increases linearly to 3.75m. The double lane change
scenario introduces greater complexity, requiring the vehicle
to change lanes to avoid an obstacle and then return to its
original lane. This maneuver demands higher control effort
to maintain stability while executing both lane changes. The
transition strategy was evaluated with a preview horizon of
T = 1.5s, optimizing control inputs at every 0.01s discrete
step. Each simulation run lasted 10s, ensuring sufficient time
to assess the impact of different transition strategies.

A. Comparison of Transition Strategies

We evaluated all transition strategies listed in Table I using
the cumulative trajectory error metric (17) by performing
simulations as mentioned in previous section. Fig. 4 presents
the cumulative error for each transition strategy, with error
bars representing the standard deviation across different
drivers. The step transition resulted in the highest error in
both scenarios, as the ADAS does not provide assistance
during the transition, requiring the human driver to assume
full control immediately. This led to large deviations from
the reference trajectory and an overall unstable transition.
The cooperative transition, where control is shared equally
between the ADAS and the human driver, performed signif-
icantly better, reducing cumulative error in the double lane
change scenario by 10.64% compared to the step transition.
However, the adaptive transition achieved the lowest total
error, further reducing the error by 14.44%, demonstrating
its effectiveness in dynamically adjusting control authority
based on real-time trajectory deviations. By continuously
adapting to the driver’s performance, the adaptive strategy
ensures that when the driver struggles to maintain control,
the ADAS provides targeted assistance to stabilize the ve-
hicle. This results in smoother, more controlled transitions,
improving both vehicle stability and driver performance.
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Fig. 4: Cumulative error with different transitions

B. Steering Effort Analysis

To further examine the impact of different transitions on
driver control effort, we analyzed steering input variations for
a single participant in the lane change scenario. Fig. 5 shows

the steering input across different transition strategies. In the
step transition, the driver’s steering input fluctuates between
—2.0 and +1.9, requiring large corrections to maintain the
trajectory. In contrast, with adaptive transition, the input
range is substantially reduced to [—0.9,40.9], indicating a
smoother and more controlled response.
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Fig. 5: Control input contribution during lane change

This effect is even more pronounced in the double-lane
change scenario, which is inherently more demanding. As
shown in Fig. 6, the driver’s steering input for the step
transition varies between —3.2 and +2.1, requiring extensive
corrections. However, in the adaptive transition, the range is
reduced to [—1.8,41.0], demonstrating that adaptive control
substantially reduces the driver workload and stabilizes the
vehicle dynamics. The cooperative transition also performs
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Fig. 6: Control input contribution during double lane change

well, showing a balanced distribution of control effort. How-
ever, the adaptive approach dynamically reallocates control
authority based on real-time driving performance, providing
a effective transition. These results highlight the advantages
of adaptive transition strategies in reducing driver workload,
improving trajectory tracking, and ensuring a more stable
takeover process.

VI. CONCLUSIONS

In this paper, we proposed an adaptive transition strat-
egy for shared control during takeovers and introduced a



systematic method to compare different transition strategies
based on vehicle tracking performance and stability. Using a
game-theoretic framework, we dynamically adjusted control
authority through time-varying weighting matrices while
incorporating real-time driver performance. Furthermore, we
integrated driver-specific preferences to ensure that, at the
end of the transition, control is transferred in a manner that
aligns with the natural behavior of the driver, minimizing
the need for corrective actions. The proposed approach was
evaluated through simulations based on ISO lane change
standards, demonstrating that adaptive transitions improve
tracking and stability compared to conventional methods.
Future work will focus on validating this adaptive tran-
sition strategy in human-in-the-loop experiments using the
CARLA simulator, where human drivers will directly ex-
perience shared control during takeovers in real time. The
control authority will be transferred dynamically based on
real-time driver inputs, allowing for an in-depth analysis of
transition performance across different human drivers.
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APPENDIX I
VEHICLE MODEL

The system matrix A is given by:

r—Cc;—C., Crlr—Mv?—Cyly Cy b
c.z%vcfzf fCT]l\gngfl‘fc 0o ]gvzis "

T 00 35 0

A= 0 1 0 0 0 0
v 0 v 0 0 0

0 0 0 0 0 1

.0 0 00 == =P

where M(1600 kg) is vehicle mass, J,(1800 kg-m?) is
yaw moment of inertia of the vehicle, v(120 km/hr) is the
speed of the vehicle, [;(0.9 m) and /(1.7 m) are distance
from the vehicle’s center of gravity to the front and rear
axles, respectively, C';(45 kN/rad) and C,.(75 kN/rad) rep-
resents the cornering stiffness of the front and rear tires,
and 7,(16) is steering ratio, relating the steering wheel
angle to the tire angle. .J,(0.04 Nm-s?/rad) is inertia of the
steering train, including the steering wheel and the driver’s
neuromuscular system, Cs(1.1 Nm/rad) is stiffness of the
steering train, and D4(0.3 Nm-s/rad) is damping coefficient
of the steering train. The input vectors are given as:Bp =

T T
|:Oa0a070707 Jls:| 7BA = |:0a0507070a }:|
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